About
HaplotypR is a program for analysis of Amplicon-Seq genotyping experiments. HaplotypR provides a Shiny interface for simpler data analysis.
The HaplotypR project was developed by Anita Lerch. A paper with more details about the program is available from:
- Lerch, A. et al. Development Of Amplicon Deep Sequencing Markers And Data Analysis Pipeline For Genotyping Multi-Clonal Malaria Infections. BMC Genomics (2017), 18(1), p.864, http://dx.doi.org/10.1186/s12864-017-4260-y.
- Lerch, A. et al. Longitudinal tracking and quantification of individual Plasmodium falciparum clones in complex infections. Sci. Rep. 9, 3333 (2019), http://dx.doi.org/10.1038/s41598-019-39656-7.
License
HaplotypR is distributed under the GNU General Public License, version 3.
Installation
Note:
- For Docker image go to https://github.com/colbyford/HaplotypR-Docker.
- For Windows computer: install the precomplied Rvsearch package from https://github.com/lerch-a/Rvsearch/releases) and Rswarm package from https://github.com/lerch-a/Rswarm/releases with install.packages(“PathToPackage/Rvsearch_0.99.1-win_R-v3.6.zip”, repos = NULL).
To install HaplotypR start R and first install ShortRead by typing:
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("ShortRead")
Then install devtools by typing
install.packages("devtools")
install.packages("git2r")
and install Rswarm, Rvsearch, (NGmergeR) and HaplotypR by typing
library(devtools)
library(git2r)
path <- file.path(tempfile(pattern="Rswarm-"), "Rswarm")
dir.create(path, recursive=TRUE)
repo <- clone("https://github.com/lerch-a/Rswarm.git", path)
clone("https://github.com/torognes/swarm.git", file.path(path, "src", "swarm"))
install(path)
path <- file.path(tempfile(pattern="Rvsearch-"), "Rvsearch")
dir.create(path, recursive=TRUE)
repo <- clone("https://github.com/lerch-a/Rvsearch.git", path)
clone("https://github.com/torognes/vsearch.git", file.path(path, "src", "vsearch"))
install(path)
path <- file.path(tempfile(pattern="NGmergeR-"), "NGmergeR")
dir.create(path, recursive=TRUE)
repo <- clone("https://github.com/lerch-a/NGmergeR.git", path)
clone("https://github.com/jsh58/NGmerge", file.path(path, "src", "NGmerge"))
install(path)
detach("package:HaplotypR", unload=TRUE)
devtools::install_github("lerch-a/HaplotypR")
Run HaplotypR on R command line
library("HaplotypR")
library("ShortRead")
Copy example files to a working directory ‘outputDir’:
# Define output directory
outputDir <- "exampleHaplotypR"
# Create output directoy
if(!dir.exists(outputDir))
dir.create(outputDir, recursive=T)
# Copy example files to output directory
file.copy(from=system.file(package="HaplotypR", "extdata"), to=".", recursive = T)
# List files example files in output direcoty
dir(file.path("extdata"))
The following files should be listed with the last R command: “barcode_Fwd.fasta”, “barcode_Rev.fasta”, “markerFile.txt”, “readsF.fastq.gz”, “readsR.fastq.gz”, “sampleFile.txt”.
Run demultiplexing by sample and rename output files
# set input file path
primerFile <- "extdata/markerFile.txt"
sampleFile <- "extdata/sampleFile.txt"
fnBarcodeF <- "extdata/barcode_Fwd.fasta"
fnBarcodeR <- "extdata/barcode_Rev.fasta"
reads <- list.files("extdata", pattern="reads", full.names = T)
# create output subdirectory
outDeplexSample <- file.path(outputDir, "dePlexSample")
dir.create(outDeplexSample)
# demultiplex by samples
dePlexSample <- demultiplexReads(reads[1], reads[2], fnBarcodeF, fnBarcodeR, outDeplexSample)
# rename output files to sample files
sampleTab <- read.delim(sampleFile, stringsAsFactors=F)
dePlexSample <- renameDemultiplexedFiles(sampleTab, dePlexSample)
# save summary table
write.table(dePlexSample, file.path(outputDir, "demultiplexSampleSummary.txt"), sep="\t", row.names=F)
Run demultiplex by marker and truncate primer sequence
# create output subdirectory
outDeplexMarker <- file.path(outputDir, "dePlexMarker")
dir.create(outDeplexMarker)
# process each marker
markerTab <- read.delim(primerFile, stringsAsFactors=F)
dePlexMarker <- demultiplexByMarker(dePlexSample, markerTab, outDeplexMarker)
# save summary table
write.table(dePlexMarker, file.path(outputDir, "demultiplexMarkerSummary.txt"), sep="\t", row.names=F)
Fuse paired reads. Two methods are provided for fusing paired reads. First method works for non overlapping sequence read pairs. Trim to a fixed length (removes low quality bases) and then concatenate forward and reverse read.
# create output subdirectory
outProcFiles <- file.path(outputDir, "processedReads")
dir.create(outProcFiles)
# Trim options
numNtF <- 190
numNtR <- 120
postfix <- sprintf("_bind%.0f_%.0f", numNtF, numNtR)
# Adjust reference to trim options and save as fasta file
refSeq <- as.character(markerTab$ReferenceSequence)
refSeq <- DNAStringSet(paste(substr(refSeq, 1,numNtF), substr(refSeq, nchar(refSeq)+1-numNtR, nchar(refSeq)), sep=""))
names(refSeq) <- markerTab$MarkerID
lapply(seq_along(refSeq), function(i){
writeFasta(refSeq[i], file.path(outputDir, paste(names(refSeq)[i], postfix, ".fasta", sep="")))
})
# Fuse paired read
procReads <- bindAmpliconReads(as.character(dePlexMarker$FileR1), as.character(dePlexMarker$FileR2), outProcFiles,
read1Length=numNtF, read2Length=numNtR)
procReads <- cbind(dePlexMarker[,c("SampleID", "SampleName","BarcodePair", "MarkerID")], procReads)
write.table(procReads, file.path(outputDir, sprintf("processedReadSummary%s.txt", postfix)), sep="\t", row.names=F)
Second method work only for overlapping sequence read pair by merging the overlap of the forward and reverse read (using vsearch wrapper).
postfix <- "_merge"
refSeq <- DNAStringSet(markerTab$ReferenceSequence)
names(refSeq) <- markerTab$MarkerID
lapply(seq_along(refSeq), function(i){
writeFasta(refSeq[i], file.path(outputDir, paste(names(refSeq)[i], postfix, ".fasta", sep="")))
})
procReadsMerge <- mergeAmpliconReads(as.character(dePlexMarker$FileR1), as.character(dePlexMarker$FileR2), outProcFiles)
procReads <- cbind(dePlexMarker[,c("SampleID", "SampleName","BarcodePair", "MarkerID")], procReadsMerge)
write.table(procReads, file.path(outputDir, sprintf("processedReadSummary%s.txt", postfix)), sep="\t", row.names=F, quote=F)
# subset: remove markers without reads
procReads <- procReads[procReads$numRead>10,]
Calculate mismatch rate and call SNPs
# Options
minMMrate <- 0.5
minOccGen <- 2
# process each marker
snpLst <- lapply(markerTab$MarkerID, function(marker){
# Calculate mismatch rate
seqErrLst <- calculateMismatchFrequencies(as.character(procReads[procReads$MarkerID == marker, "ReadFile"]),
refSeq[marker],
method ="pairwiseAlignment", # c("pairwiseAlignment","compareDNAString"),
minCoverage=100L)
names(seqErrLst) <- procReads[procReads$MarkerID == marker, "SampleID"]
seqErr <- do.call(cbind, lapply(seqErrLst, function(l){
l[,"MisMatch"]/l[,"Coverage"]
}))
write.table(seqErr, file.path(outputDir, sprintf("mismatchRate_rate_%s%s.txt", marker, postfix)), sep="\t", row.names=F)
# Call SNPs
potSNP <- callGenotype(seqErr, minMismatchRate=minMMrate, minReplicate=minOccGen)
snpRef <- unlist(lapply(potSNP, function(snp){
as.character(subseq(refSeq[marker], start=snp, width=1))
}))
snps <- data.frame(Chr=marker, Pos=potSNP, Ref=snpRef, Alt="N", stringsAsFactors=F)
write.table(snps, file=file.path(outputDir, sprintf("potentialSNPlist_rate%.0f_occ%i_%s%s.txt",
minMMrate*100, minOccGen, marker, postfix)),
row.names=F, col.names=T, sep="\t", quote=F)
# Plot mismatch rate and SNP calls
png(file.path(outputDir, sprintf("plotMisMatchRatePerBase_rate%.0f_occ%i_%s%s.png",
minMMrate*100, minOccGen, marker, postfix)),
width=1500 , height=600)
matplot(seqErr, type="p", pch=16, cex=0.4, col="#00000088", ylim=c(0, 1),
ylab="Mismatch Rate", xlab="Base Position", main=marker, cex.axis=2, cex.lab=2)
abline(v=snps[,"Pos"], lty=2, col="grey")
abline(h=minMMrate, lty=1, col="red")
dev.off()
return(snps)
})
names(snpLst) <- markerTab$MarkerID
Call Haplotypes
# call haplotype options
minCov <- 3
detectionLimit <- 1/100
minOccHap <- 2
minCovSample <- 25
# remove samples without reads
procReads <- procReads[procReads$numRead>0,]
# call final haplotypes
finalTab <- createFinalHaplotypTable(
outputDir = outputDir, sampleTable = procReads, markerTable = markerTab, referenceSeq = refSeq,
snpList = snpLst, postfix = postfix, minHaplotypCoverage = minCov, minReplicate = minOccHap,
detectability = detectionLimit, minSampleCoverage = minCovSample)
Run HaplotypR as Shiny App (currently dysfunctional)
Load HaplotypR package:
library("HaplotypR")
Copy Example Files to a working directory ‘outputDir’:
# Define output directory
outputDir <- "~/exampleHaplotypR"
# Create output directoy
if(!dir.exists(outputDir))
dir.create(outputDir, recursive=T)
# Set working directory to output directory
setwd(outputDir)
# Copy example files to output directory
file.copy(from=system.file(package="HaplotypR", "extdata"), to=outputDir, recursive = T)
# List files example files in output directory
dir(file.path(outputDir, "extdata"))
The listed file can be used as example input files in the shiny app. The following files should be listed with the last R command: “barcode_Fwd.fasta”, “barcode_Rev.fasta”, “markerFile.txt”, “readsF.fastq.gz”, “readsR.fastq.gz”, “sampleFile.txt”.
Run HaplotypR GUI:
install.packages("shiny")
install.packages("shinyFiles")
runShinyApp()